Sains Malaysiana 54(6)(2025): 1569-1582
http://doi.org/10.17576/jsm-2025-5406-12
Enhanced Solar Cell
Efficiency via Reflectance on Silicon Wafers: Laser Texturing vs. Anisotropic
Etching
(Kecekapan Sel Suria yang
Dipertingkatkan melalui Pantulan pada Wafer Silikon: Tekstur Laser lwn. Goresan
Anisotropik)
NURUL HUDA ABDUL RAZAK1, BADARIAH BAIS1,*,
NOWSHAD AMIN2, KAMARUZZAMAN SOPIAN3 & MD.
AKHTARUZZAMAN4
1Department
of Electrical, Electronic and Systems Engineering, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
2Department of Electrical and Electronic
Engineering, Faculty of Engineering, American International
University-Bangladesh (AIUB), 408/1 Kuratoli Road,
Kuril, 1229 Dhaka, Bangladesh
3Department of Mechanical Engineering, Universiti Teknologi PETRONAS,
32610 Seri Iskandar, Perak, Malaysia
4Department of Chemistry, Faculty of Science,
Islamic University of Madinah (IUM), 42351 Madinah, Saudi Arabia
Diserahkan:
19 Ogos 2024/Diterima:5 Mac 2025
Abstract
Due to its high refraction index, silicon (Si)
reflects a significant amount of solar light of more than 37% of the sun’s
spectral range, particularly when it does not strike the surface
perpendicularly. This effect consequentially reduces solar cell efficiency due
to electrical and optical losses. Surface texturing is essential for increasing
the cells' photon-trapping and absorbing capabilities to improve the efficiency
of low-performance solar cells. In this study, pulsed Nd:YAG lasers are used to texturize surfaces of
silicon wafers. This procedure is quicker and easier and does not produce waste
or pollutants. However, there are some disadvantages to laser texturing; one is
that it may lower solar cell efficiency if the damaged layer caused by the
laser texturing is not removed. In this study, the laser damage layer is washed
off with potassium hydroxide (20%), also known as KOH. This paper also compares
the reflectance of laser texturing and wet chemical etching on surfaces of
crystalline silicon wafers. The
PerkinElmer Lambda 950 UV-VIS-NIR Spectrophotometer results indicate that laser
texturing obtains a reflectance of 1% before and 9% after KOH treatment, in
contrast to wet chemical etching, which has a reflectance of 16%. Laser
texturing showed some efficiency, especially when texturing silicon wafer
surfaces in parallel patterns, with a conversion efficiency of about 5% and
grid patterns at 7.5%. This successful outcome demonstrates that laser
texturing gives silicon solar cells a good alternative to traditional texturing
techniques.
Keywords: Anisotropic
etched; laser texturing; pulsed Nd:YAG laser; reflectance; silicon solar cells
Abstrak
Disebabkan indeks biasan yang tinggi, silikon (Si) memantulkan sejumlah besar cahaya matahari lebih daripada 37% daripada julat spektrum matahari, terutamanya apabila cahaya tidak mengenai permukaan secara tegak. Kesan ini secara tidak langsung mengurangkan kecekapan sel suria disebabkan oleh kerugian elektrik dan optik. Penteksturan permukaan adalah penting untuk meningkatkan keupayaan penyerapan dan perangkapan foton bagi meningkatkan kecekapan sel suria yang berprestasi rendah. Dalam kajian ini,
laser Nd:YAG berdenyut digunakan untuk mentekstur permukaan wafer silikon. Prosedur ini lebih cepat dan mudah serta tidak menghasilkan sisa atau bahan pencemar. Walau bagaimanapun, terdapat beberapa kelemahan pada penteksturan laser; salah satunya adalah ia boleh mengurangkan kecekapan sel suria jika lapisan yang rosak akibat penteksturan laser tidak dibuang. Dalam kajian ini, lapisan kerosakan laser dibersihkan dengan kalium hidroksida (20%), yang
juga dikenali sebagai KOH. Kertas ini juga membandingkan pantulan penteksturan laser dan pengukiran kimia basah pada permukaan wafer silikon kristal. Keputusan daripada Spektrofotometer PerkinElmer Lambda 950 UV-VIS-NIR menunjukkan bahawa penteksturan laser memperoleh pantulan sebanyak 1% sebelum dan 9% selepas rawatan KOH, berbanding dengan penteksturan kimia basah yang mempunyai pantulan sebanyak 16%. Penteksturan laser menunjukkan kecekapan tertentu, terutamanya apabila penteksturan permukaan wafer silikon dalam corak selari dengan kecekapan penukaran kira-kira 5% dan corak grid pada 7.5%. Hasil kejayaan ini menunjukkan bahawa penteksturan laser memberikan sel suria silikon alternatif yang baik kepada teknik penteksturan tradisional.
Kata kunci: Laser Nd:YAG berdenyut; pantulan; penteksturan anisotropik; penteksturan laser; sel suria silikon
RUJUKAN
Abdul Razak, N.H., Sopian,
K., Amin, N. & Akhtaruzzaman, Md. 2020.
Investigation on the post-treatment after pulsed Nd:YAG laser texturing on silicon solar cells
surfaces. Proc. SPIE 11387, Energy Harvesting and Storage: Materials,
Devices, and Applications X 2020: 1138717.
Alsaigh,
R.A. 2024. Enhancement of surface properties using ultrashort-pulsed-laser
texturing: A review. Crystals 14: 353.
Barrio, R., Canteli, D., González, N.,
Torres, I., Márquez, A., Molpeceres, C. & Gandía, J.J. 2021. Light-trapping improvement of
limited-quality silicon wafers for silicon heterojunction solar cell
applications. 13th Spanish Conference on Electron Devices (CDE), IEEE.
pp. 15-18.
Ben Rabha, M., Saadoun, M., Boujmil, M.F., Bessaïs, B., Ezzaouia, H. & Bennaceur, R.
2005. Application of the chemical vapor-etching in polycrystalline silicon
solar cells. Applied Surface Science 252(2): 488-493.
Chen, W., Liu, Y., Yang, L., Wu, J., Chen, Q., Zhao, Y., Wang, Y.
& Du, X. 2018. Difference in anisotropic etching characteristics of
alkaline and copper-based acid solutions for single-crystalline Si. Scientific
Reports 8: 3408.
Choi, P.H., Kim, J.M., Kim, M.S., Cho, J.H., Baek,
D.H., Kim, S.S. & Choi, B.D. 2015. Enhanced efficiency of multicrystalline silicon solar cells made via UV laser
texturing. Journal of the Korean Physical Society 67: 991-994.
Dehghanpour,
H., Parvin, P., Mortazavi, S., Reyhani, A., Chegenizadeh, A. & Aghaei, M.
2022. Analysis of surface texturing of silicon with surface regular
microstructure using C method. Energies 15(20): 7540.
Dobrzański,
L.A. & Drygała, A. 2007. Laser processing of multicrystalline silicon for texturization of solar
cells. Journal of Materials Processing Technology 191(1-3): 228-231.
Du, C., Zhao, Y. & Li, Y. 2023. Effect of surface cleaning
process on the wafer bonding of silicon and pyrex glass. Journal of Inorganic and Organometallic Polymers and Materials 33(3):
673-679.
Ghani, Z.A., Zainal Abidin, N.A. &
Othman, H. 2023. Model prototype of a solar tracking system supplying
electrical power for sensors used in a natural disaster monitoring system. Jurnal Kejuruteraan 6(2): 179-188.
Gupta, M.C. 2020. Laser-induced surface modification for
photovoltaic device applications. Handbook of Laser Micro- and
Nano-Engineering. pp. 1-28.
Hsiao, W.T., Tseng, S.F., Huang, K.C., Wang Y.H. & Chen, M.F.
2011. Pulsed Nd:YAG laser
treatment of monocrystalline silicon substrate. The International Journal of
Advanced Manufacturing Technology 56: 223-231.
Hu, F., Sun, Y., Zha, J., Chen, K., Zou,
S., Fang, L. & Su, X. 2017. Pre-texturing multi-crystalline silicon wafer
via a two-step alkali etching method to achieve efficient nanostructured solar
cells. Solar Energy Materials and Solar Cells 159: 121-127.
Hussein, R.D. & Ismael, D. 2022. Review on surface texturing
method for solar cell efficiency enhancement. Journal of Physical Chemistry
and Functional Materials 5(1): 1-8.
Iqbal, S., Hussain, A., Wu, W., Su, D., Yang, Y., Guo, X. &
Zhang, T. 2022. Rapid anisotropic chemical etching for quick formation of novel
octagonal pyramids on silicon surface for photovoltaics. Surfaces and
Interfaces 33: 102205.
Iyengar, V.V., Nayak, B.K. & Gupta, M.C. 2010. Optical
properties of silicon light trapping structures for photovoltaics. Solar
Energy Materials and Solar Cells 94(12): 2251-2257.
Jamaatisomarin,
F., Chen, R., Hosseini-Zavareh, S. & Lei, S.
2023. Laser scribing of photovoltaic solar thin films: A review. Journal of
Manufacturing and Materials Processing 7(3): 94.
Katasho,
Y., Liang, Y., Murata, S., Fukunaka, Y., Matsuoka, T.
& Takahashi, S. 2015. Mechanisms for enhanced hydrophobicity by
atomic-scale roughness. Scientific Reports 5: 13790.
Kato, S., Kurokawa, Y. & Soga, T.
2022. Enhancement of reflectance reduction of solar cells by a silicon
nanoparticle layer on a textured silicon substrate. Results in Optics 9:
100296.
Knuettel,
T., Bergfeld, S. & Haas, S. 2013. Laser texturing
of surfaces in thin-film silicon photovoltaics-a comparison of potential
processes. Journal of Laser Micro Nanoengineering 8(3): 222.
Lee, B.G., Lin, Y.T., Sher, M.J., Mazur, E. & Branz, H.M. 2012. Light trapping for thin silicon solar
cells by femtosecond laser texturing. 38th IEEE Photovoltaic Specialists
Conference, Austin, Texas, June 3-8.
Lee, Y., Woo, J.H., Kim, K., Lee, K.S., Jeong,
Y., Kim, J., Hwang, G.W., Lee, D.K., Kim, J.Y. & Kim, I. 2023. Laser-assisted
nanotexturing for flexible ultrathin crystalline Si solar cells. Solar RRL 7(19): 2300376.
Li, H., Li, L., Huang, R., Tan, C., Yang, J., Xia, H., Chen, B. &
Song, X. 2021. The effect of surface texturing on the laser-induced wetting
behavior of AlSi5 alloy on Ti6Al4V alloy. Applied Surface Science 566:
150630.
Liu, H., Du, Y., Yin, X., Bai, M. & Liu, W. 2022. Micro/nanostructures
for light trapping in monocrystalline silicon solar cells. Journal of
Nanomaterials 2022: 8139174.
Ma, S., Liao, B., Qiao, F., Ding, D.,
Gao, C., Li, Z., Tong, R., Kong, X. & Shen, W. 2023. 24.7% industrial
tunnel oxide passivated contact solar cells prepared through tube PECVD integrating
with plasma-assisted oxygen oxidation and in-situ doped polysilicon. Solar
Energy Materials and Solar Cells 257: 112396.
Macdonald, D.H., Cuevas, A., Kerr, M.J., Samundsett,
C., Ruby, D., Winderbaum, S. & Leo, A. 2004.
Texturing industrial multicrystalline silicon solar
cells. Solar Energy 76(1-3): 277-283.
Manzoor, S., Filipič, M., Onno, A., Topič, M. &
Holman, Z.C. 2020. Visualizing light trapping within textured silicon solar
cells. Journal of Applied Physics 127(6): 063104.
Nabil, M. & Motaweh, H.A. 2016.
Alkali anisotropic chemical etching of p-silicon wafer. Proceedings of the
2016 International Conference on Mechanics, Materials and Structural
Engineering. https://doi.org/10.2991/icmmse-16.2016.34
Nevenchannyy,
Y., Khoruzhiy, K. & Kudryashov,
D. 2019. Development of antireflective coatings based on SiO2/Si3N4 on textured silicon for heterojunction solar cells. Journal of Physics:
Conference Series 1410(1): 012101.
Nobbs, J.H. 1985. Kubelka-Munk theory and
the prediction of reflectance. Review of Progress in Coloration and Related
Topics 15: 66-75.
Okamoto, K., Fujita, Y., Nishigaya, K.
& Tanabe, K. 2023. An all ambient, room temperature–processed solar cell
from a bare silicon wafer. PNAS Nexus 2(3): pgad067.
Oliver Nesa Raj, S. & Prabhu, S. 2023. Depletion of reflectance of silicon
surface textured using nano second fiber laser. Lubricants 11(1): 15.
Papet,
P., Nichiporuk, O., Kaminski, A., Rozier, Y., Kraiem, J., Lelievre, J.F., Chaumartin, A., Fave, A. & Lemiti, M. 2006. Pyramidal texturing of silicon solar cell
with TMAH chemical anisotropic etching. Solar Energy Materials and Solar
Cells 90(15): 2319-2328.
Park, J.E., Han, C.S., Choi, W.S. & Lim, D. 2021. Effect of various
wafer surface etching processes on c-Si solar cell characteristics. Energies 14(14): 4106.
Radfar,
B., Es, F. & Turan, R. 2020. Effects of different
laser modified surface morphologies and post-texturing cleanings on c-Si solar
cell performance. Renewable Energy 145: 2707-2714.
Radfar,
B., Es, F., Nasser, H., Akdemir, O., Bek, A. & Turan, R. 2018.
Effect of laser parameters and post-texturing treatments on the optical and
electrical properties of laser textured c-Si wafers. AIP Conference
Proceedings. 1999(1): 050008.
Razak,
N.H.A. & Amin, N. 2014. Nd:YAG laser texturization on silicon surface. Advanced Materials Research 894:
201-205.
Razak,
N.H.A., Amin, N., Rahman, K.S., Pasupuleti, J., Akhtaruzzaman, M., Sopian, K., Albaqami, M.D., Tighezza, A.M., Alothman, Z.A. & Sillanpää,
M. 2023. Influence of pulsed Nd: YAG laser oscillation energy on silicon wafer
texturing for enhanced absorption in photovoltaic cells. Results in Physics 48: 106435.
Razak,
N.H.A., Sopian, K., Amin, N. & Akhtaruzzaman, Md. 2020a. An investigation of optical
absorption of pulsed Nd:YAG laser
texturing on silicon solar cells surfaces before and after post treatment. 2020
IEEE International Conference on Semiconductor Electronics (ICSE). pp. 116-119.
Razak,
N.H.A., Sopian, K., Amin, N. & Akhtaruzzaman, Md. 2020b. Reducing reflectance on silicon
solar cells surfaces by controlling X-Y translation table speeds of pulsed Nd:YAG laser system. 2020 47th
IEEE Photovoltaic Specialists Conference (PVSC). pp. 2109-2112.
Saive, R.
2021. Light trapping in thin silicon solar cells: A review on fundamentals and
technologies. Progress in Photovoltaics: Research and Applications 29(10): 1125-1137.
Van Nijnatten, P.A. 2014. Regular reflectance
and transmittance. Spectrophotometry - Accurate Measurement of Optical
Properties of Materials 46: 143-178.
Vinčiunas,
A., Indrišiunas, S., Voisiat,
B., Račiukaitis, G., Šimkiene,
I., Suzanovičiene, R., Reza, A. & Mažeikiene, R. 2013. Effect of laser patterning on
properties of crystalline Si photovoltaic cells and substrates. Journal of
Laser Micro Nanoengineering 8(3): 244-252.
Vazsonyi,
E., De Clercq, K., Einhaus,
R., Van Kerschaver, E., Said, K., Poortmans,
J., Szlufcik, J. & Nijs,
J. 1999. Improved anisotropic etching process for industrial texturing of
silicon solar cells. Solar Energy Materials and Solar Cells 57(2):
179-188.
Wang, Q., Zhou, W., Chen, F. & Yang, R. 2016. The effect of
surface microstructure on the optical reflectance of monocrystalline silicon. Materials
Research Express 3(12): 125020.
Winderbaum,
S., Reinhold, O. & Yun, F. 1997. Reactive ion etching (RIE) as a method for
texturing polycrystalline silicon solar cells. Solar Energy Materials and
Solar Cells 46(3): 239-248.
Yoo,
J., Yu, G. & Yi, J. 2009. Black surface structures for crystalline silicon
solar cells. Materials Science and Engineering: B 159: 333-337.
*Pengarang untuk surat-menyurat; email: badariah@ukm.edu.my